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 EPAs modeling approach for lymphoid and breast cancer remains incorrect.  The 
methodological problems identified in Valdez-Flores and Sielken (2013) are relevant 
despite EPA’s dismissal in Appendix J.3.1. Weaknesses include: 

 Despite the 2007 SAB’s recommendation for EPA to focus on individual 
data, EPA’s modeling continues to focus on a few categorical rate ratios. 

 EPA inappropriately rejects scientifically credible modeling options that are 
based on individual (not summary data). 

 EPA’s criterion for model selection (or equivalently model rejection) is 
fundamentally flawed.  EPA fails to recognize that the categorical rate 
ratios are summary statistics tied to a specific assumed exposure-
response model. Rate ratios are comparisons to a “control” group, and the 
data for the control group are random and not equal to some fixed 
underlying true value.  In fact, the value for the “control” rate is an 
estimated value that depends on the fitted model.  The rate ratios are 
ratios of the estimated “treatment” rate to the estimated “control” rate 
when all rates are estimated from the same model.  Thus, it is not 
appropriate to plot a particular set of rate ratios based on an assumed 
model and then compare a second fitted model to these rate ratios.  It is 
inappropriate because the relevant rate ratios for the second fitted model 
have a different denominator (different “control” rate) than the rate ratios 
based on the assumed model- hence different rate ratios.  Comparing a 
fitted model to rate ratios based on a different model is inappropriate.   
That is, rejecting a second fitted model because it does not compare well 
to the wrong set of rate ratios (as EPA does) is inappropriate.   

Valdez-Flores and Sielken (2013) does not advocate a specific model, but rather 
advocates using the individual data and model selection based on valid comparisons.   

The following text is EPA’s Appendix J.3.1 with Sielken & Associates Consulting, Inc.’s 
comments inserted in italics and numbered. 
 
J.3.1. Valdez-Flores and Sielken (2013)  
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 Valdez-Flores and Sielken (2013) criticize the approach employed by EPA in this 
and earlier drafts of the EtO carcinogenicity assessment of using a weighted linear 
regression of the RR estimates based on categorical exposure groups to derive 
exposure-response relationships for lymphoid cancer mortality and breast cancer 
mortality, stating that exposure-response modeling is best based on individual data. 
Valdez-Flores and Sielken (2013) express concern, for example, that because all the 
categorical RR estimates share the same denominator, if the rate in the reference group 
differs from the true rate, the RR estimates will be systematically biased.  
 
 Valdez-Flores and Sielken (2013) also contend that, because the data for the 
unexposed group are random, the intercept should be estimated for any exposure-
response model fit to the categorical RR estimates rather than being fixed at 1. To 
illustrate their arguments, Valdez-Flores and Sielken (2013) fit several models to the 
Steenland et al. (2004) breast cancer mortality data: a categorical log-linear model 
(model 1); a linear model fit to the categorical RR estimates, with the intercept fixed at 1 
(model 2); a log-linear model fit to the categorical RR estimates, with the intercept 
unrestricted (model 3); and a continuous log-linear model (fit to the continuous exposure 
data; model 4).  
      

1. EPA uses the terms “continuous data” and “individual data” synonymously.  On page 
iii, EPA says that continuous data are data across the full exposure range without first 
converting the exposure and individual occurrence data into categorical data for 
exposure-response modeling or the derivation of unit risk estimates. 
 
With four exposure groups (not counting the unexposed reference group)—the number 
Steenland et al. (2004) used for their categorical modeling—the RR estimates and the 
slopes for models 2 and 3 are similar, but the slope for model 4, the continuous log-
linear model, is much shallower. With more exposure groups (20 and 61, the latter 
being chosen so that there was exactly one breast cancer death in each exposure 
group), the results for models 2 and 3 differ more appreciably and the slope for model 3 
(unrestricted intercept) is more similar to the slope for model 4, the continuous log-linear 
model.  
      

2. In other words, model 2 (EPA’s model using categorical summary rate ratios and the 
intercept fixed to 1) is substantially different than the model fit to the individual data 
(model 4).  Furthermore, as the number of categories increases, the model with 
unrestricted intercept (model 3) approaches the model fit to the individual data (model 
4).) EPA does not mention that a similar behavior of the models was seen for the other 
two endpoints, lymphohematopoietic and lymphoid cancers, and that their results were 
shown in the supplemental material to Valdez-Flores and Sielken (2013). 
 
 Valdez-Flores and Sielken (2013) further suggest that it is inappropriate to use 
comparisons with categorical RR estimates when evaluating models of the continuous 
individual data. Valdez-Flores and Sielken (2013) disregard the apparent supralinear 
shape of the exposure-response relationship, suggesting it is the result of exposure 
measurement error, citing work by Crump (2005).   
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3.  None of the categorical RRs in Figures 1, 2 and 3 for breast cancer mortality in 
Valdez-Flores and Sielken (2013) show a clear “supralinear” shape as argued by EPA. 
Furthermore, there is no piecewise – two-, three- etc. – supralinear model that fits the 
categorical RRs statistically significantly better than the linear model at the 5% 
significance level.  In addition, EPA fails to acknowledge that Valdez-Flores and Sielken 
(2013) wrote “grouping of mortality deaths into only a few cumulative exposure intervals 
results in oversimplification of the underlying data and masks the true exposure-
response relationship.” [Emphasis added]. The effect of very few groups can be seen 
in Table 2 in Valdez-Flores and Sielken (2013), where the slope of the correct model 
that estimates the intercept approaches the model fit to the individual data as the 
number of cumulative exposure intervals increases. 
 
 EPA notes that it did use continuous exposure models for the breast cancer 
incidence data.  
      

4. However, breast cancer incidence is the only endpoint for which the final model (i.e., 
the model used for calculating risk estimates) was not based on a few grouped 
categorical RRs and a linear model restricted to being equal to one at the origin. 
      

Extensive modeling of the individual data based on continuous exposure for the data 
sets for lymphoid cancer mortality and breast cancer mortality, however, yielded no 
preferred  
      

5. Does EPA have an objective scientific definition of “preferred”? 
      

models for the purposes of deriving unit risk estimates because of the strong 
supralinearity of the data (i.e., the response rate increases rapidly at low exposure 
levels and then attenuates or plateaus), which results in a very high slope in the low-
exposure range (see Sections 4.1.1.2 and 4.1.2.2). Thus, EPA retains the approach of 
using the linear regression of the categorical results for those two cancer data sets 
(although EPA does not rely on the breast cancer mortality data set for the derivation of 
a unit risk estimate because the breast cancer incidence data are more suitable for the 
derivation of the desired incidence estimates). Valdez-Flores and Sielken (2013) state 
that “[u]nder no circumstances should an appropriate and relevant exposure-response 
model fit to individual epidemiological data be discarded in favor of an exposure-
response model fit to summary data”; however, EPA did consider the continuous 
exposure log-linear model that Valdez-Flores and Sielken (2013) advocate and did not 
find it to be appropriate.  
      

6. EPA’s criterion for model selection (or equivalently model rejection) is fundamentally 
flawed.   EPA’s problem stems from their misinterpretation of the categorical rate ratios. 
EPA fails to recognize that the categorical rate ratios are summary statistics tied to a 
specific assumed exposure-response model. Rate ratios are comparisons to a 
“control” group, and the data for the control group are random and not equal to some 
fixed underlying true value.  In fact, the value for the “control” rate is an estimated 
value that depends on the fitted model.  The rate ratios are ratios of the estimated 
“treatment” rate to the estimated “control” rate when all rates are estimated from the 
same model.  Thus, it is inappropriate for EPA to plot a particular set of rate ratios 
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based on an assumed model and then compare a second fitted model to these rate 
ratios.  It is inappropriate because the relevant rate ratios for the second fitted model 
have a different denominator (different “control” rate) than the rate ratios based on the 
assumed model and hence different rate ratios.  Comparing a fitted model to rate ratios 
based on a different model is inappropriate.  That is, rejecting a second fitted model 
because it does not compare well to the wrong set of rate ratios (as EPA does) is 
inappropriate.   
 
Valdez-Flores and Sielken (2013) does not advocate a specific model, but rather 
advocates using the individual data and model selection based on valid comparisons.    
      

For example, the log-linear model does not provide a statistically significant fit to either 
the lymphoid cancer mortality or breast cancer mortality data sets.  
 
7. EPA inappropriately rejects the fitted log-linear model for lymphoid cancer mortality 
and for breast cancer mortality because these fitted models do not visually compare 
well with the wrong categorical rate ratios (i.e., rate ratios based on a different estimated 
control rate and a different fitted model – as discussed in Comment 6 above). 
 
EPA uses the phrase “does not provide a statistically significant fit” inappropriately.  A 
likelihood ratio test does not test whether a fitted model provides “a statistically 
significant fit“.  Instead, a likelihood ratio test (in this case) is testing whether the fitted 
model provides a better fit than the same model with the “slope” (or some other 
parameter) being fixed equal to the null hypothesis value (frequently, zero). 
 
      

Valdez-Flores and Sielken (2013) ignore the fact that when EPA modeled the 
continuous exposure data, the supralinear models (e.g., log-linear models with log-
transformed exposure and two-piece spline models) fit the data better than linear and 
sublinear (e.g., log-linear) models, consistent with the supralinear shape suggested by 
the categorical results.  
      

8. The likelihood of a composite model – e.g. piecewise linear model – is greater than or 
equal to the likelihood of a simpler (nested) model – e.g., a linear model. That is, the 
fact that the likelihood of the two-piece linear model is greater than or equal to the 
likelihood of the linear model cannot be challenged, but the real scientific question is 
whether the likelihood of two-piece linear model is statistically significantly greater 
than the likelihood of a linear model (i.e., is there sufficient statistical evidence to justify 
a more complicated model). It can be shown, that none of the piecewise linear models 
used by EPA fit the lymphoid and breast cancer mortality data statistically significantly 
better than the linear or log-linear models at the 5% significance level.   
 
The attenuation in the exposure-response relationship results from the influence of a 
small number of subjects with very high exposures. Such attenuation is commonly 
observed in occupational epidemiology studies of cancer (Stayner et al., 2003). 
Consideration of the categorical data can help avoid the influence of the subjects with 
very high exposures; in fact, EPA omits the highest exposure category in its linear 
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regressions of the categorical results. The supralinear log-transformed exposure model 
similarly mitigates the influence of the subjects with very high exposures.  
      

9. EPA still considers the supralinear log-transformed exposure model as reasonable 
model even though the major proponent of this model has rejected it because it is 
biologically implausible -- see Steenland, K., R. Seals, M. Klein, J. Jinot and H.D. Kahn. 
2011, “Risk Estimation with Epidemiological Data When Response Attenuates at High-
Exposure Levels”, Environmental Health Perspectives 119(6): 831-837. Similarly, other 
authors have warned about supralinear models when fitting epidemiological data – see 
Ginevan, M. E. and D. K. Watkins, 2010, “Logarithmic Dose Transformation in 
Epidemiologic Dose-Response Analysis: Use with Caution,” Regulatory Toxicology and 
Pharmacology 58: 336-340; Crump, K.S., 2005, “The effect of random error in exposure 
measurement upon the shape of the exposure response,” Dose-Response 3: 456–464 
(Formerly Nonlinearity in Biology, Toxicology, and Medicine); and Valdez-Flores, C., R. 
L. Sielken, Jr, and M. J. Teta, 2010, “Quantitative Cancer Risk Assessment Based on 
NIOSH and UCC epidemiological data for workers exposed to ethylene oxide,” 
Regulatory Toxicology and Pharmacology 56: 312-320. 
 
 Moreover, EPA sees no reason to suppose that there is a problem with the 
reference group that would result in notable systematic bias. Rothman (1986) (p. 345) 
notes that the linear regression approach he presents for estimating a continuous slope 
based on categorical data can be inefficient if the reference category contains small 
frequencies; such is not the case for the Steenland et al. (2004) data, however. For the 
breast cancer mortality data set, the reference group contains 40% of the breast cancer 
deaths, and for the lymphoid cancer data set, the reference group contains about 17% 
of the deaths.  
      

10. The 40% of breast cancer deaths in the reference group does not necessarily mean 
that the frequency of breast cancer deaths in the reference group is not a small 
frequency.  That is, (the number of breast cancer deaths corresponding to 40% of the 
breast cancer deaths) / (total number of people in the reference group) can still be a 
small frequency, and Rothman’s warning about the effect of small frequencies applies. 
 
EPA ignores the other warnings that Rothman (1986) (p. 345) gives about the linear 
model they used; namely, “By forcing the regression line through the reference point, 
this regression model effectively places an extremely large weight on the location of that 
point in relation to the remaining array of points. … If the reference category has small 
frequencies, then the relation of the remaining points to one another will reflect the 
trend better than their relation to the arbitrarily fixed reference point.” [emphasis 
added].  
      

Furthermore, the reference groups are highly comparable internal comparison groups 
made up of other workers in the same facilities with short follow-up times since the time 
of first exposure (e.g., with exposures all within 20 years of follow-up for the breast 
cancer mortality analyses) who were “lagged out” in the analyses (i.e., assigned zero 
exposure). There is no reason to expect that these workers differ from those with non-
zero exposure estimates with respect to background cancer rates. 
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 In addition, EPA disagrees with the contention that the intercept in the linear 
regression model should be estimated. In conducting its weighted linear regressions, 
EPA used the approach of Rothman (1986), in which the RR at the intercept is explicitly 
fixed at 1 (see Appendix F). The categorical rate for the unexposed reference group, 
although not defined explicitly, is the best estimate available for the rate in that group, 
and it is appropriate to fix the baseline rate for the RR estimates at that level.  
      

11. EPA ignores the other warnings that Rothman (1986) (p. 345) gives; namely “ “By 
forcing the regression line through the reference point, this regression model effectively 
places an extremely large weight on the location of that point in relation to the remaining 
array of points. … If the reference category has small frequencies (see also Comment 
10 above), then the relation of the remaining points to one another will reflect the 
trend better than their relation to the arbitrarily fixed reference point.” [emphasis 
added]. In addition, EPA forces the linear model to go through the rate ratio for the first 
group. What would be the result of the model if the line is forced to go through the RR of 
any other group? Why does the linear model have to assume that the reference group 
has to be perfectly predicted at the cost of missing the RRs at other groups?  
      

When the underlying exposure-response relationship is supralinear, as is the case for 
these two data sets (see Sections 4.1.1.2 and 4.1.2.2), using the data for all the 
categorical groups to “estimate” the rate in the unexposed group – as proposed by 
Valdez-Flores and Sielken (2013) – would result in the data with the high exposures in 
the plateau region receiving a lot of weight in the linear regression. This would “pull” the 
linear model down at the higher exposures and concomitantly “pull” the model up at the 
lower exposures, thus “overestimating” the implicit rate in the unexposed group. In other 
words, the results for the higher exposure levels would unduly influence the estimate for 
the unexposed group, yielding a flawed estimate of the baseline rate.  
 
12. Valdez-Flores and Sielken (2013) does not suggest “using the data for all the 
categorical groups to ‘estimate’ the rate in the unexposed group.”  Valdez-Flores and 
Sielken (2013) suggest that, as Rothman suggests, “the relation of the remaining 
points to one another will reflect the trend better than their relation to the 
arbitrarily fixed reference point.” [emphasis added] 
      

Moreover, Valdez-Flores and Sielken (2013) appear to be using an unweighted linear 
regression model, which undervalues the fact that a lot of data are reflected in that 
group (40% of deaths for breast cancer mortality) relative to the exposed groups and 
exacerbates the over-influence of the high-exposure results. (How one would obtain a 
weight for the reference group in their approach is unclear because the variability in the 
RR estimates is built into the estimates for the exposed groups and there is no SE or CI 
for the RR = 1 value of the reference group.)  
      

13. It seems that EPA misinterprets the weighted least squares fit. For the linear model 
that goes through the origin, the weight for the unexposed/reference group is infinite, 
regardless of the number or percentage of deaths in the group. Using an un-weighted 
procedure does not undervalue the reference group but rather assigns equal weight to 
all rate ratios. Furthermore, Valdez-Flores and Sielken (2013) state that “EPA used a 
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weighted least-squares procedure instead of a simpler un-weighted least squares 
procedure; however, the difference between these two procedures virtually disappears if 
the number of cancer deaths per non-zero exposure interval is approximately the 
same.” [emphasis in the original]. Valdez-Flores and Sielken defined exposure intervals 
with approximately equal number of cancer deaths.  
 
This over-influence of the high-exposure results in the Valdez-Flores and Sielken (2013) 
approach is illustrated in their findings. In their Table 2, for example, the increasing 
intercept and decreasing slope values obtained for model 3 with the increasing number 
of exposure intervals reflect the very high exposure values getting more weight. This is 
visually depicted in their Figures 2 and 3, which show the high-exposure values “pulling” 
model 3 down to a greater extent than model 2.  
 
14. EPA’s own reference, Rothman (1986) (p. 345), indicates the reasons for what EPA 
observed in Table 2 of Valdez-Flores and Sielken (2013) when Rothman states “… the 
relation of the remaining points to one another will reflect the trend better than their 
relation to an arbitrarily fixed reference point.” [emphasis added].  Model 4 in Valdez-
Flores and Sielken (2013) is the model fit to the individual data and provides the best 
estimate of the trend.  Model 3 is a model fitted to the categorical RRs, and the estimate 
of the trend based on this Model 3 approaches the trend of the best model (model 4) as 
the number of exposure intervals increases.  
      

Valdez-Flores and Sielken (2013) find affirmation in the fact that the slope of model 3 
(the unrestricted log-linear model fit to the categorical results) approaches the slope of 
the log-linear model fit to the continuous exposure data, but they are aspiring to a 
(sublinear) continuous exposure model that does not provide a good fit to the data.  
      

15. The log-linear model fit to the individual data is the best log-linear model fit to 
individual data based on Cox proportional hazards regression and a maximum 
likelihood criterion. Although the fit to the individual data is most appropriate, if the 
modeling is done on the basis of the categorical RRs, then the unrestricted log-linear 
model fits better than EPA’s restricted linear model.   
 
As discussed in Comment 6, EPA’s rejection of the best log-linear model fit to individual 
data is inappropriate. 
 
In EPA’s analyses, the log cumulative exposure model provides a better fit to the 
continuous exposure data, reflecting the underlying supralinear pattern of the exposure-
response relationship.  
      

16. Although the likelihood of the log cumulative exposure model is greater than the 
likelihood of the log linear model, the main proponent of this log cumulative exposure 
model has dismissed this model because it is biological implausible -- see Steenland, 
K., R. Seals, M. Klein, J. Jinot and H.D. Kahn, 2011, “Risk Estimation with 
Epidemiological Data When Response Attenuates at High-Exposure Levels,” 
Environmental Health Perspectives 119(6): 831-837. Similarly, other authors have 
warned about supralinear models when fitting epidemiological data – see Ginevan, M. 
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E. and D. K. Watkins, 2010, “Logarithmic Dose Transformation in Epidemiologic Dose-
Response Analysis: Use with Caution,” Regulatory Toxicology and Pharmacology 58: 
336-340; Crump, K.S., 2005, “The effect of random error in exposure measurement 
upon the shape of the exposure response,” Dose-Response 3: 456–464 (Formerly 
Nonlinearity in Biology, Toxicology, and Medicine); and Valdez-Flores, C., R. L. Sielken, 
Jr, and M. J. Teta, 2010, “Quantitative Cancer Risk Assessment Based on NIOSH and 
UCC epidemiological data for workers exposed to ethylene oxide,” Regulatory 
Toxicology and Pharmacology 56: 312-320.) 
 
The Breslow and Day (1980) quote cited by Valdez-Flores and Sielken (2013) 
recognizes that although the scale of the relative risk estimates is arbitrary, the shapes 
of the curves have meaning; Valdez-Flores and Sielken (2013), however, largely ignore 
the underlying shape.  
      

17. Estimates of categorical rate ratios cannot (and should not) be interpreted as the 
raw data. Comparing fitted models to categorical RRs is not the same as comparing 
fitted models to the individual data.  (See also Comment 6.) Categorical rate ratios are 
estimates of the ratio of hazard rates for different exposure intervals to the hazard rate 
for a reference group. The reference group is usually selected to be the unexposed 
group but any group can be used as a reference group. The estimated rate ratios give 
an indication of the relative hazard rate in one exposure group to the hazard rate in 
another exposure group.  
 
There could be a lot of information contained in the individual data that are “absorbed” 
into the rate ratio estimates (i.e., “lost”) and not properly accounted for by models fit to a 
few rate ratios. For example, age, gender, race, calendar year, co-exposures, job, plant, 
etc. are variables that often influence the hazard ratios of different exposure groups. 
Models fit to the individual data, on the other hand, can appropriately account for all of 
this information and may result in different models than models fit to a few categorical 
rate ratios. The apparent supra-linearity that EPA observes in the four rate ratios of the 
lymphoid data looks more like random variation when the number of cumulative 
exposure intervals and rate ratios is increased—say to 20 or more categories as in the 
supplementary material for Valdez-Flores and Sielken (2013) which is publicly available 
on line at http://dx.doi.org/10.1016/j.yrtph.2013.07.011 and attached for CAAC 
members’ convenience. 
  
 EPA’s analyses of the effects of excluding the top 5% of exposures confirm the 
impact of these high-exposure results in dampening the slopes of the log-linear models. 
For example, Figure D-2c  
 
18. Presumably, EPA meant D-2b.  
 
in Appendix D shows the considerable increase in the slope of the log-linear model 
when the top 5% of exposures are omitted from the breast cancer mortality data set. As 
discussed above, the unrestricted intercept approach used by Valdez-Flores and 
Sielken (2013) is similarly susceptible to the undue influence of a small number of 
subjects with very high exposures. For unit risk estimation, it is the lower exposure 

http://dx.doi.org/10.1016/j.yrtph.2013.07.011
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region that is of greatest interest for low-exposure extrapolation, and EPA’s approach of 
fixing the RR for the unexposed group at 1 and omitting the highest exposure group 
(due to the plateauing of the responses at high exposure levels) from the linear 
regression of the categorical results provides a better representation of the exposure-
response relationship in the lower exposure range than the approach advocated by 
Valdez-Flores and Sielken (2013). 
 
 Furthermore, EPA disagrees that the categorical results are not useful depictions 
of the underlying exposure-response relationship. Valdez-Flores and Sielken (2013) 
themselves note that because there is a separate beta parameter estimate for each 
exposure group in the categorical model, there is considerable flexibility for the beta 
parameters to represent changes from the background hazard rate. For this reason, 
categorical models can be useful to show underlying exposure-response patterns 
(shapes) in the data. Such patterns can be obscured with single-parameter continuous 
models, such as the log-linear model, which presupposes a sublinear shape.  
      

19. (As previously stated in Comment 17).  “Estimates of categorical rate ratios cannot, 
and should not be interpreted as the raw data. Categorical rate ratios are estimates of 
the ratio of hazard rates for different exposure intervals to the hazard rate for a 
reference group. The reference group is usually selected to be the unexposed group but 
any group can be used as a reference group. The estimated rate ratios give an 
indication of the relative hazard rate in one exposure group to the hazard rate in another 
exposure group. There could be a lot of information contained in the individual data that 
are “absorbed” into the rate ratio estimates (i.e., “lost”) and not properly accounted for 
by models fit to a few rate ratios. For example, age, gender, race, calendar year, co-
exposures, job, plant, etc. are variables that often influence the hazard ratios of different 
exposure groups. Models fit to the individual data, on the other hand, can appropriately 
account for all of this information and may result in different models than models fit to a 
few categorical rate ratios.” 
 
 EPA also disagrees with the discounting by Valdez-Flores and Sielken (2013) of 
the apparent supralinear shape of the exposure-response relationship as the result of 
exposure measurement error based on work by Crump (2005). Exposure 
misclassification error is a complicated issue, and Crump’s (Crump, 2005) conclusions 
appear to rely on the simplifying assumptions that the measurement error is classical 
and multiplicative.  
      

20. Crump (2005) cautions that this may be a problem with any type of measurement 
error. Crump states “This formulation should be general enough to approximate a wide 
range of conditions involving random, independent exposure errors. A qualitatively very 
similar result was obtained assuming a uniform distribution of true exposures (Figure 3). 
Thus, the effect of random exposure error seems to be in the direction of making low 
exposures appear more dangerous than they actually are.” Furthermore, Crump (2005) 
warns of other reasons that the response may be misinterpreted to be supra-linear 
when he states “In addition to random exposure errors, there are other sources of 
distortion of the shape of the exposure response. If a study utilizes an inappropriate 
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control group in which the response is low compared to that expected in the study 
population, the exposure response will tend toward an appearance of supra-linearity.”     

      

However, in epidemiological studies, such as the NIOSH ethylene oxide study, in which 
job-exposure matrices are used to estimate individual worker exposures, exposure 
measurement error is generally considered to be largely of the Berkson type and is 
often treated as additive (Armstrong, 1990). Heid et al. (2004) have demonstrated that 
different assumptions about exposure measurement error can have different impacts on 
the observed exposure-response relationship. For a specified log-linear relationship, 
Heid et al. (2004) found that multiplicative classical error could make the observed 
exposure-response relationship appear supralinear, consistent with the findings of 
Crump (2005); however, additive classical error dampened the log-linear relationship, 
multiplicative Berkson error intensified the log-linear relationship, and additive Berkson 
error had no impact on the log-linear relationship, although the precision would be 
reduced. Moreover, NIOSH conducted an extensive exposure assessment that included 
the development of a regression model that had high validity when tested against 
independent measurement data (Section A.2.8 of Appendix A); thus, the existence of 
substantial exposure measurement error in the Steenland et al. (2004) data is 
speculative.  
      

21. EPA failed to document any check on the nature of the exposure errors in the 
NIOSH data. Although not published as part of our 2013 paper, Sielken and Associates 
Consulting, Inc., used the techniques suggested by Heid et al. (2004) and the individual 
data, to show that the measurement errors in the NIOSH data appear to be 
multiplicative at least for plant and calendar year.  
 
EPA’s statement above suggests that “For a specified log-linear relationship” the 
measurement errors in the NIOSH data “could make the observed relationship appear 
supralinear.” Given that the categorical rate ratios can be misleading and can be 
misinterpreted depending on the shape/form/behavior of measurement errors, the most 
sensible alternative is to fit a model to the individual data and determine scientifically 
whether a model fits the data appropriately for the sake of risk assessment. 
 
There are other sources of the apparent supralinearity that EPA “sees” when EPA looks 
at only a few categorical RRs and mistakenly rejects fitted models by comparing the 
fitted models to inappropriate categorical RRs (as discussed in Comment 6).   


